Рецензия

на методические указания к выполнению практических работ по дисциплине «Техническая механика» для студентов 2 курса специальности 151901 «Технология машиностроения» преподавателя специальных дисциплин Чемезова Д.А.

Методические указания содержат требования к выполнению и оформлению практических работ по разделам дисциплины «Техническая механика»: «Теоретическая механика», «Сопротивление материалов» и «Детали машин».

Работы оформлены в едином стиле, указаны «Темы», «Цели работ». В разделе «Порядок выполнения» дана ясная последовательность выполнения той, или иной работы, приводятся поясняющие схемы и рисунки.

Также даются контрольные вопросы, призванные нацелить студентов на выявление сути изучаемых явлений и процессов. Указана литература, к которой студент может обратиться для получения дополнительных сведений по вопросам, связанным с выполняемой практической работой.

Считаю, что представленные на рецензирование методические указания окажут помощь студентам и могут быть рекомендованы для распространения и внедрения передового опыта на территории РФ по специальности 151901 «Технология машиностроения».

Peyensenm D. P. Lybamob (Tuesnurieexici gupermop-HANGER 1016 2. Lybamob (Tuesnurieexici gupermop-HANGE

Методические указания к выполнению практических работ по технической механике для студентов 2 курса специальности 151901 (Технология машиностроения)

РАССМОТРЕНО:

Председатель метод. комиссии

Т.Н.Комарова

«10» шарта 2016 г.

Разработчик: Чемезов Д.А., преподаватель спец. дисциплин ГБПОУ ВО «Владимирский индустриальный колледж»

Содержание

1. Практическая работа №1	4
2. Практическая работа №2	7
3. Практическая работа №3	10
4. Практическая работа №4	13
5. Практическая работа №5	16
6. Практическая работа №6	17
7. Практическая работа №7	18
8. Практическая работа №8	
9. Практическая работа №9	
10. Практическая работа №10	24

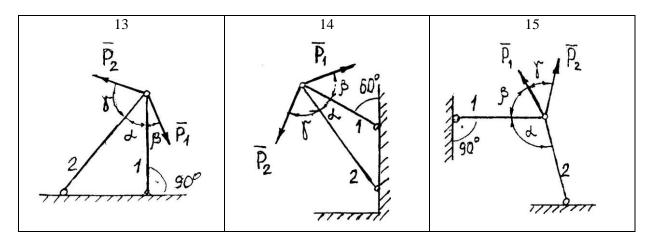
Практическая работа № 1.

Определение усилий в стержнях стержневой конструкции.

Тема: Статика. Плоская система сходящихся сил.

<u>Цель работы:</u> Научится определять усилия в стержнях конструкции аналитическим методом.

<u>Задание:</u> Определить усилия в стержнях заданной конструкции аналитическим способом. Схему выбрать в соответствии с номером студента по списку журнала.


Порядок выполнения:

- 1. Изобразить заданную схему в соответствии с вариантом.
- 2. Выделить материальную точку, к которой приложена внешняя сила.
- 3. Определить тип связей, удерживающих точку.
- 4. Отбросить связи, заменить их действие силами реакции.
- 5. Составить расчетную схему, выделив точку, находящуюся в равновесии. Приложить к ней все действующие силы.
- 6. Выбрать оси координат.
- 7. Записать уравнения равновесия: $\begin{cases} \Sigma Fkx = 0 \\ \Sigma Fky = 0 \end{cases}$
- 8. Из уравнений равновесия найти величину сил реакции.
- 9. Записать величину усилий в стержнях.
- 10. Вычертить многоугольник сил, приложенных к точке.
- 11 .Вывод.

Таблица1 — Варианты заданий

Вариант	Схема	P_{t}	P2	α	β	γ
Барианііі	LXEMU	кН		градусы		
1	1	6	8	45	90	30
2	2		10	90	30	45
3	3	<i>5</i>	6	120	30	60
2 3 4 5 6 7 8	2 3 4 5 6 7 8	7		60	30	30
5	5	10	9	30	30	30
6	6	8	4	90	60	45
7	7	12	3	120	30	90
8	8	9	5	60	45	75
9 10	9	4.	7	60	45	45
10	10	8	12	90	30	30
11	11	10	8	90	60	30
12	12	8	5	60	60	45
13	13	7	10	45	45	75
14	14	4	6	30	60	30
<i>15</i>	15	5	8	120	45	45
16	1	10	4	30	60	30
17	2	3	7	90	60	30
18	3	8 3	7 5	150	60	30
19	4	3	12	30	60	60
20	5	7	5	60	30	45
21	6	6	4	60	30	90
21 22	7	6 5	8	90	60	60
23	1 2 3 4 5 6 7 8 9	14	12 5 4 8 6	45	75	45
24	9	12	10	120	60	30
25	10 11	4		60	30	60
25 26	11	8	7 6	90	120	30
27	12	6	9	120	30	30
28	13	10	3	30	45	60
29	14	1	4	60	120	30
30	15	9 3 7	8	90	30	60
31	1	7	5	60	30	60
32	1 2 3	12	6	90	30	90
33	3	4	10	90	45	60
34	4	8	4	45	30	45

Практическая работа № 2.

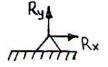
Определение реакций опор балки на двух опорах.

Тема: Статика. Плоская система произвольно расположенных сил.

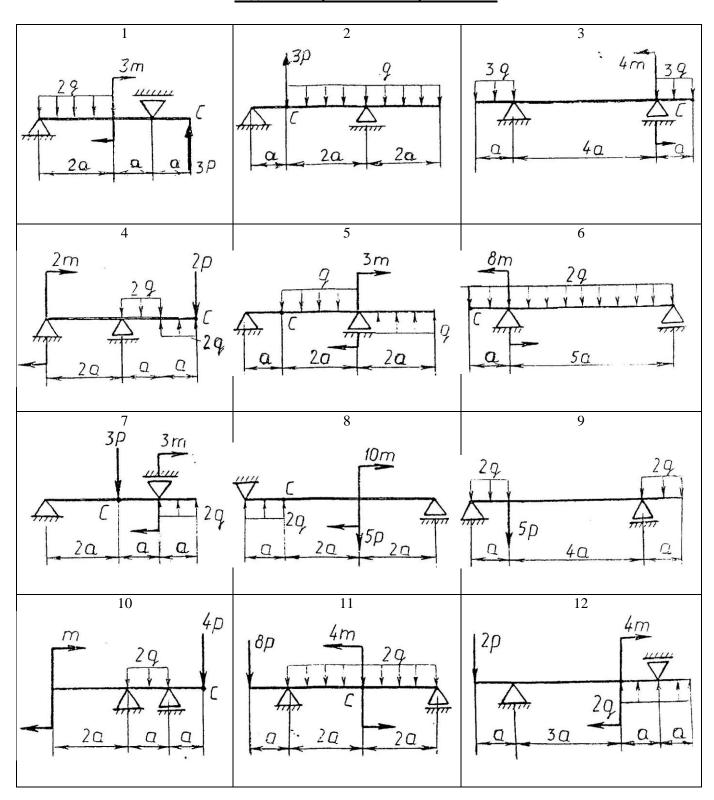
Цель работы: Научится определять реакции опор балки установленной на двух опорах.

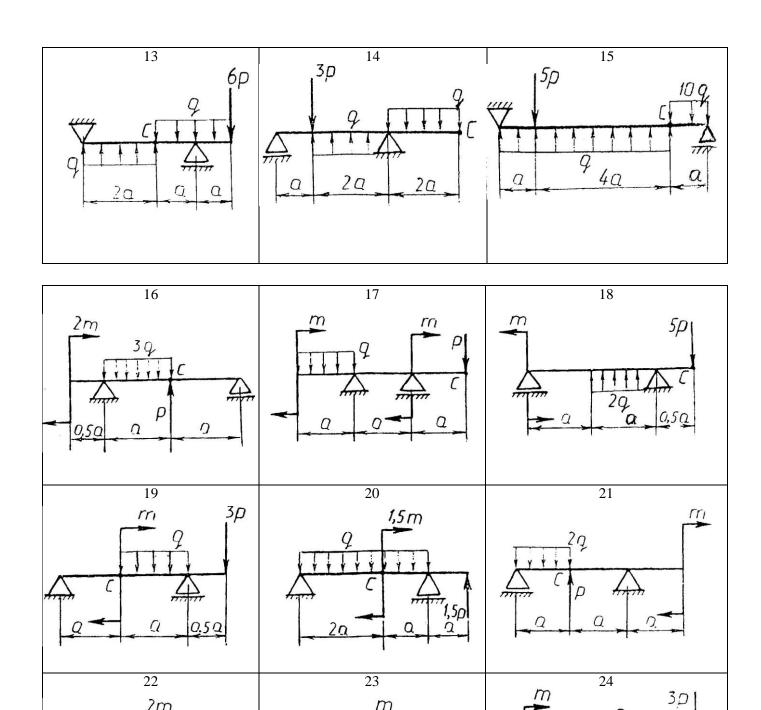
<u>Задание:</u> Определить реакции опор балки на двух опорах. Схему выбрать в соответствии с номером студента по списку в журнале.

Принять:
$$q = 2\frac{kH}{M}$$
; $P = 4kH$; $M = 2kH \cdot M$; $a = 2M$.

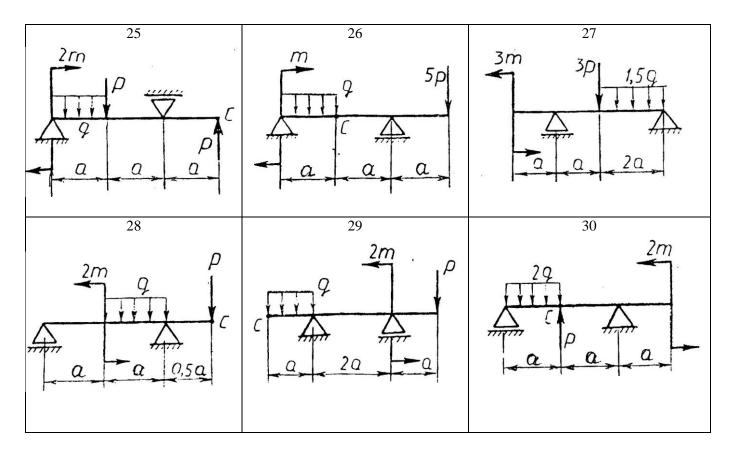

Порядок выполнения.

- 1. Изобразить схему в соответствии с вариантом.
- 2. Заменить распределенную нагрузку ее равнодействующей $Q=q \cdot l$.


Приложить равнодействующую к балке в центре тяжести соответствующего прямоугольника.


3. Заменить опоры их реакциями. Реакцию шарнирно-подвижной опоры направить перпендикулярно к опорной поверхности.

Реакцию шарнирно-подвижной опоры разложить на две составляющие, направленные по осям координат.


- 4. Составить расчетную схему балки.
- 5. Выбрать оси координат и центры моментов.
- 6. Составить уравнение равновесия: $\sum M_A = 0$; $\sum M_B = 0$; $\sum F_{kx} = 0$.
- 7. Из уравнений равновесия найти неизвестные реакции опор.
- 8. Провести проверку правильности решения, составив уравнения $\sum F_{ky} = 0$.
- 9. Записать ответы.
- 10. Вывод.

2m

(

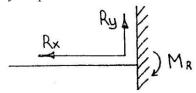
Практическая работа № 3.

Определение реакций жесткой заделки балки.

Тема: Статика. Плоская система произвольно расположенных сил.

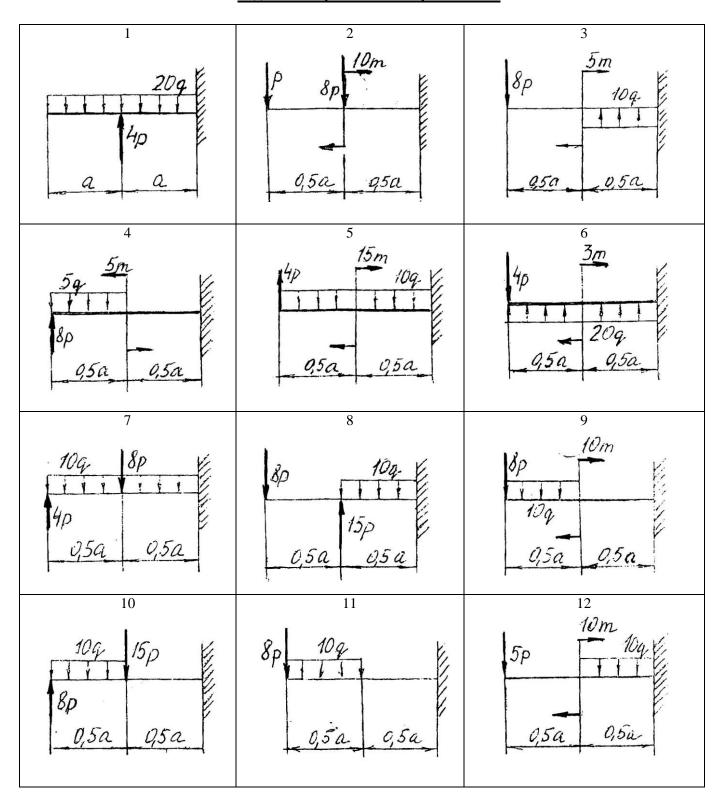
Цель работы: Научится определять реакции жесткой заделки консольной балки.

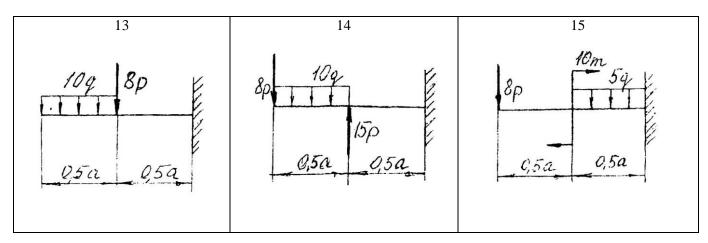
<u>Задание:</u> Определить реакции жесткой заделки балки. Схему выбрать в соответствии с номером студента по списку в журнале.

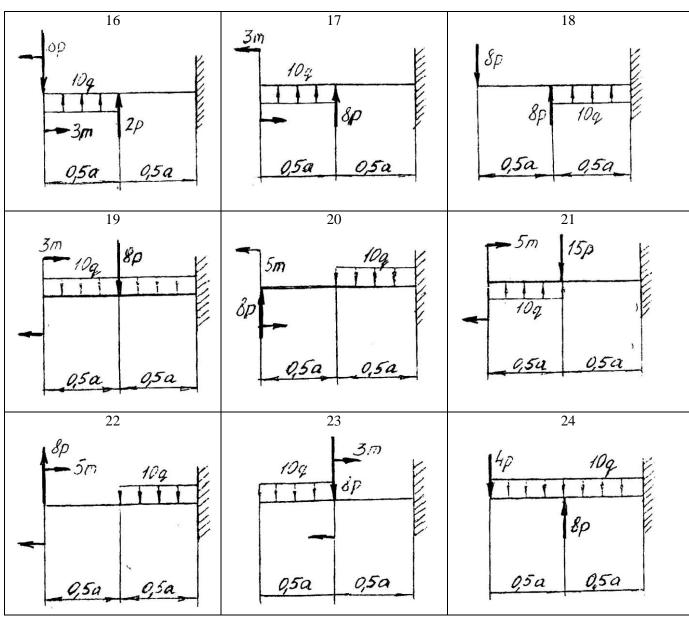

Принять:
$$q = 2\frac{kH}{M}$$
; $P = 4kH$; $M = 2kH \cdot M$; $a = 2M$.

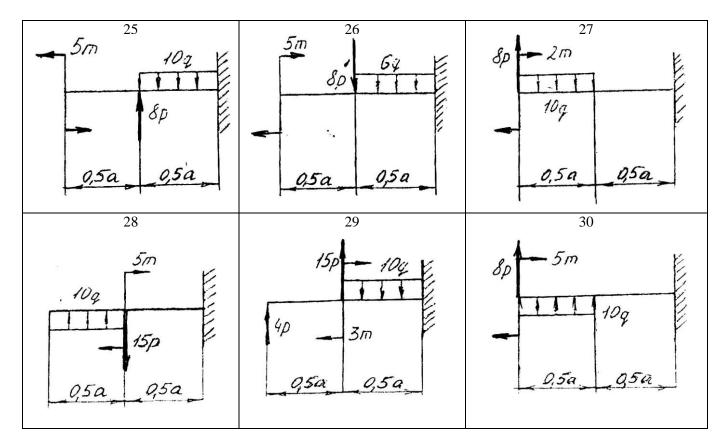
Порядок выполнения.

- 1. Изобразить схему в соответствии с вариантом.
- 2. Заменить распределенную нагрузку ее равнодействующей $Q=q \cdot l$.


Приложить равнодействующую к балке в центре тяжести соответствующего прямоугольника.


3. Заменить жесткую заделку ее реакциями.




- 4. Составить расчетную схему балки.
- 5. Выбрать оси координат.
- 6. Составить уравнения равновесия: $\sum M_A = 0; \sum F_{kx} = 0; \sum F_{ky} = 0.$

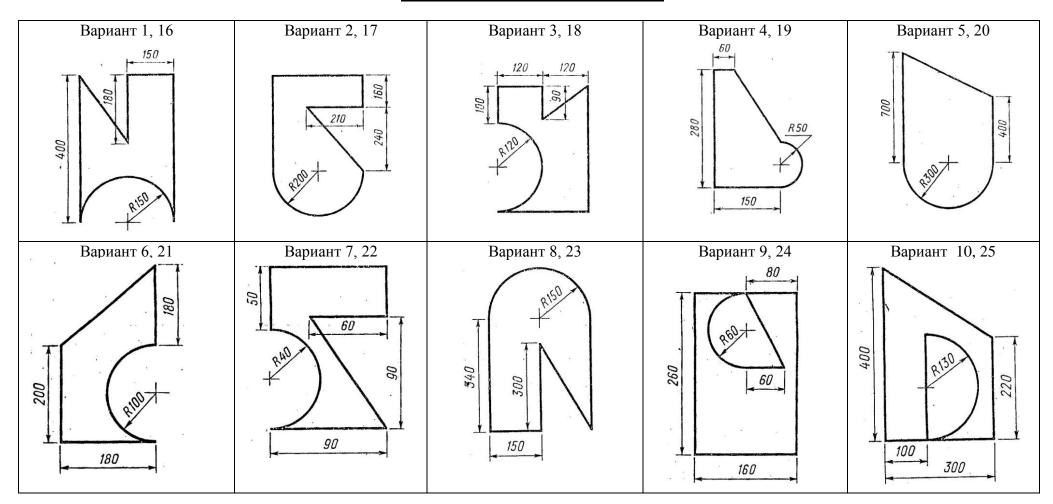
- 7. Из уравнений равновесия найти неизвестные реакции.
- 8. Провести проверку правильности решения, составить уравнения: $\sum M_C = 0$.
- 9. Записать ответы.
- 10. Вывод.

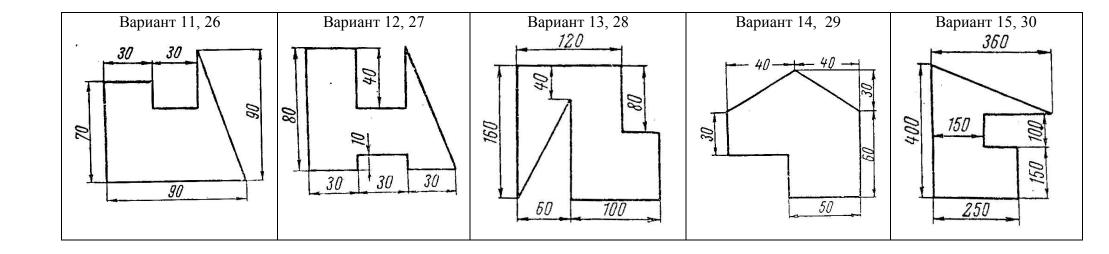
Практическая работа № 4.

Определение координат центра тяжести плоской фигуры.

Тема: Статика. Центр тяжести.

<u>Цель работы:</u> Научится определять координаты центра тяжести плоской фигуры сложной формы.


<u>Задание:</u> Определить координаты центра тяжести сложной плоской фигуры. Схему выбрать в соответствии с номером студента по списку в журнале.


Порядок выполнения.

- 1. Изобразить заданную фигуру в соответствии с заданием в произвольном масштабе.
- 2. Выбрать оси координат.
- 3. Разбить фигуру на составные части, положение центров тяжести которых известно или легко определяется.
- 4. Определить площади составных частей. Площади вырезов принимать отрицательными.
- 5. Определять координаты центров тяжести составных частей.
- 6. Найденные значения площадей, а также координаты их центров тяжести представить в соответствующие формулы и вычислить координаты центра тяжести всей фигуры.

соответствующие формулы и вычислить координаты центра тяжести всей фигуры.
$$X_C = \frac{\sum A_\kappa \cdot X_\kappa}{\sum A_\kappa} = \frac{A_1 \cdot X_1 + A_2 \cdot X_2 + A_3 \cdot X_3 + ...}{A_1 + A_2 + A_3 + ...} =$$

$$Y_C = \frac{\sum A_\kappa \cdot Y_\kappa}{\sum} = \frac{A_1 \cdot Y_1 + A_2 \cdot Y_2 + A_3 \cdot Y_3 + ...}{A_1 + A_2 + A_3 + ...} =$$

- 7. По найденным координатам нанести на эскизе положение центра тяжести фигуры.
- 8. Вывод.

Практическая работа № 5.

Определение угловых и линейных скоростей и ускоренных точек вращающегося тела.

Тема: Кинематика. Вращательное движение твердого тела.

<u>Цель работы:</u> Научится определять угловые скорости и ускорения точек вращающегося, тела, а также их линейные скорости, касательное, нормальное и полное ускорение.

<u>Задание</u>: Движение груза задано уравнением y=f(t). Определить скорость и ускорение груза в момент времени t_I , а также скорость и ускорение точки B на ободе шкива. Данные для своего варианта принять по таблице 1.

Порядок выполнения.

- 1. Изобразить в произвольном масштабе схему.
- 2. Для груза A изобразить вектор скорости $\overrightarrow{V_A}$ и ускорения $\overrightarrow{a_A}$.
- 3. Из уравнения движения y=f(t) найти для груза скорость движения: $V_A=\frac{dy}{dt}=f^{'}(t)$

и ускорение движения: $a_A = \frac{dv_A}{dt} = V_A^{\prime}$.

- 4. Подставить в полученные выражения значения времени t, и найти численное значение скорости и ускорения.
- 5. Из условия совместимости движения троса с грузом и точек обода шкива при отсутствии проскальзывания определяем $V_B = V_A$; $a_B^T = a_A$.

Откладываем на эскизе вектор $\overrightarrow{V_{\scriptscriptstyle B}}$ и $\overrightarrow{a}_{\scriptscriptstyle B}^{\scriptscriptstyle T}$.

- 6. Определяем угловую скорость шкива: $V_{B} = r \cdot \omega$;
- 7. Определение углового ускорения шкива: $a_{R}^{T} = r \cdot E$
- 8. Определение нормального ускорения точки $B\colon a_{\scriptscriptstyle B}^{\scriptscriptstyle n}=r\cdot\omega^2$
- 9. Определение полного ускорения точки *B*: $a_B = \sqrt{(a_B^T)^2 + (a_B^n)^2}$.
- 10. Нанести векторы скорости ускорения точки B на эскиз.
- 11. Ответ.
- 12. Вывод.

Задания к практической работе № 5

Движение груза A, опускающегося при помощи лебедки, задано уравнением $y=at^2+bt+c$, где y — в м, t — в с. Определить скорость и ускорение груза в момент времени t_I , а также скорость и ускорение точки B на ободе шкива (табл.)

Вариант задания	1 11 21	2 12 22	3 13 23	4 14 24	5 15 25	6 16 26	7 17 27	8 18 28	9 19 29	10 20 30
а, м/c ²	2	0	3	0	3	3	2	0	4	0
<i>b, м/с</i>	0	3	4	2	0	4	0	3	4	2
С, М	3	4	0	5	2	0	4	2	0	3
r, м	0,5	0,8	0,8	0,8	0,5	0,5	0,4	0,6	0,8	0,5
t_{l}, c	1,5	1	1,5	2	1,5	1	1,5	1	1,5	1

Практическая работа № 6.

Решение задач динамики методом кинематики.

Тема: Динамика. Сила инерции. Принцип Даламбера.

<u>Цель работы:</u> Научится **определять** силу инерции для различных случаев движения и применять принцип Даламбера.

Задание: Решить задачу № 6 в соответствии со своим вариантом.

Порядок выполнения:

- 1. Выделить материальную точку, движение которой рассматривается и изобразить ее на рисунке.
- 2. Выявить все активные силы и изобразить их приложенными к точке.
- 3. Освободить точку от связей, заменить связи их реакциями.
- 4. Определить скорость и ускорения нити и изобразить их приложенными к точке.
- 5. Определить силу инерции $F_{uh} = m \cdot a$.
- 6. Приложить силу инерции к движущейся точке.
- 7. Применить метод кинетостатики и рассмотреть равновесие полученной системы сил. Составить уравнения равновесия $\sum F_{kx} = 0; \quad \sum F_{ky} = 0;$
- 8. Из уравнений равновесия найти требуемую величину.
- 9. Записать ответ.
- 10. Вывод.

Задания к практической работе № 6

Вариант 1, 11, 21.

К потолку вагона на тонкой нити подвешен груз. При прямолинейном движении вагона с постоянным ускорением $a=5m/ce\kappa^2$ нить отклоняется от вертикали на некоторый угол α . Найти этот угол и натяжение нити, если масса груза $I\kappa z$. Массой нити пренебречь.

Вариант 2, 12, 22.

К потолку вагона на тонкой нити подвешен шарик, масса которого $2\kappa z$. При равноускоренном прямолинейном движении вагона нить отклонилась на угол $\alpha = 18^0$. Определить ускорение вагона и натяжение нити.

Вариант 3,13, 23.

Груз в 5m, будучи подвешенным на тросе, длина которого 4m совершает колебательные движения около положения равновесия. При переходе через положение равновесия груз имеет скорость $1,6m/ce\kappa$. Определить в этот момент натяжение троса.

Вариант 4, 14, 24.

Груз в 12m, подвешенный на тросе, опускается вертикально вниз с постоянным ускорением $4,4m/ce\kappa^2$. Определить натяжение троса.

Вариант 5, 15, 25.

Гирю в $2\kappa \epsilon$ взвешивают на пружинных весах, находясь в лифте, который поднимается вверх с ускорением $6m/ce\kappa^2$. Определить показание пружинных весов.

Вариант 6, 16, 26.

Шарик, масса которого 0.5кг, привязан к нити и вращается вместе с ней в вертикальной плоскости с угловой скоростью 150об/мин. Длина нити 50см. Определить наибольшее натяжение нити.

Вариант 7, 17, 27.

Шарик, масса которого $1,2\kappa z$, привязали к нити длиной 40cm. Шарик с нитью вращается в вертикальной плоскости с угловой скоростью 300pad/cek. Определить наименьшее натяжение нити.

Вариант 8, 18, 28.

Шарик массой 0.8κ г привязан к нити, которая может выдержать максимальное натяжение $5\kappa H$. При какой угловой скорости вращения в вертикальной плоскости возникает опасность разрыва нити, если ее длина 80cM?

Вариант 9,19, 29.

С какой скоростью должен проехать мотоциклист по арочному мостику радиусом 25 m, чтобы в самой верхней точке мостика давление мотоцикла на мостик стало в два раза меньше его общего веса.

Вариант 10, 20, 30.

Масса мотоциклиста вместе с мотоциклом $280\kappa z$. Когда мотоциклист проезжает по легкому мостику со скоростью $108\kappa m/чac$, то мостик прогибается, образуя дугу радиусом 60m. Определить максимальное давление, производимое мотоциклом на мостик.

Практическая работа № 7.

Расчеты стержней испытывающих деформацию растяжения (сжатия).

<u>Тема:</u> «Сопромат. Растяжение».

<u>Цель работы:</u> Научиться выполнять расчеты элементов конструкций, испытывающих деформацию растяжения (сжатия).

<u>Задание:</u> Для заданного двухступенчатого стального бруса, нагруженного двумя силами F_1 и F_2 , построить эпюры продольных сил (N_z) . Определить площади поперечных сечений и диаметр каждой

ступени бруса из условия прочности; построить эпюры нормальных напряжений; определить удлинение (укорочение) каждой ступени и найти перемещение свободного конца бруса.

При расчетах принять $[\sigma]=150M\Pi a$: $E=2\cdot 10^5 M\Pi a$. Исходные данные выбрать из таблицы.

Номер варианта взять в соответствии с номером студента в списках по журналу.

Порядок выполнения:

- 1. Изобразить расчетную схему в соответствии с вариантом.
- 2. Выписать исходные данные из таблицы.
- 3. Разделить брус на участки, границы которых определяются сечениями, где изменяются площадь поперечного сечения или приложены внешние нагрузки. Пронумеровать участки.
- 4. Определить внутренние силовые факторы на каждом участке для чего применить метод сечения.
- 5. Построить эпюру N_z .
- 6. Из условия прочности при растяжении.

$$\sigma_{max} = \frac{N_z}{A} \le [\sigma]$$

Найти площадь поперечных сечений бруса на каждом участке.

$$A \ge \frac{N_{zi}}{[\sigma]}$$
 (MM^2)

Определить диаметр каждого из сечений:

$$d \ge \sqrt{\frac{4A}{\pi}}$$
 (MM)

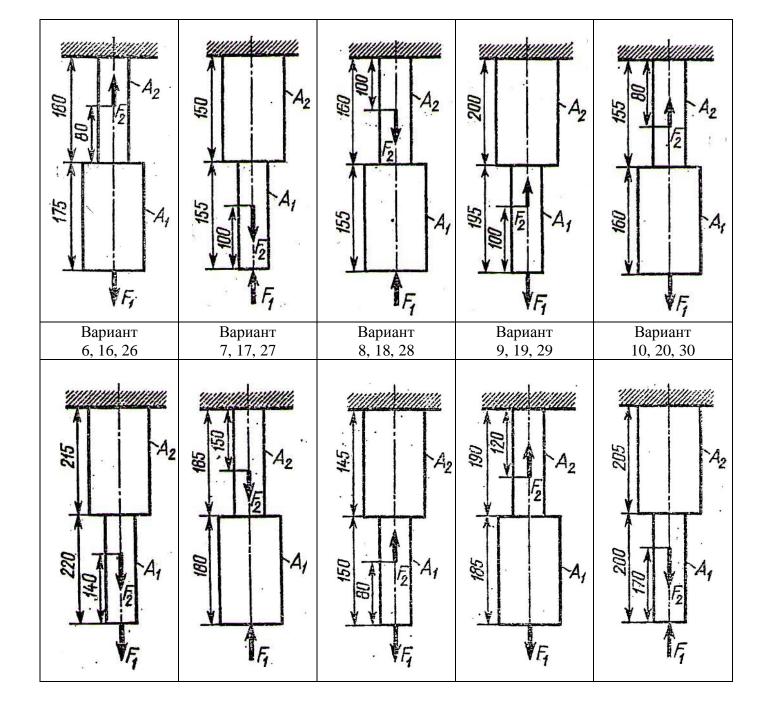
Округлить диаметр до стандартного из ряда чисел R40.

Уточнить площади поперечных сечений: $A_1' = \frac{\pi d_1^2}{4}$ $A_2' = \frac{\pi d_2^2}{4}$

8. Определить напряжения на каждом из участков.

$$\sigma_{ucm} = \frac{N_z}{A^{/}}$$
 (MIIa)

- 9. Построить эпюру нормальных напряжений по длине бруса.
- 10. Определить деформацию каждого участка.


$$\Delta l_i = \frac{N_{zi}l_i}{A_i \cdot E} = \frac{\sigma_i l_i}{E}$$
 (MM)

11. Определить перемещение свободного конца бруса.

$$\Delta l = \Delta l_1 + \Delta l_2$$

12. Вывод.

Вариант	Вариант	Вариант	Вариант	Вариант
1, 11, 21	2, 12, 22	3, 13, 23	4, 14, 24	5, 15, 25

Практическая работа № 8.

Расчеты при изгибе.

Тема: Сопротивление материалов. Деформация изгиба.

<u>Цель работы:</u> Научиться построению эпюр изгибающих моментов и поперечных сил и производить расчеты на прочность при изгибе.

<u>Задание:</u> Для заданной расчетной схемы оси определить реакции опор, построить эпюры поперечных сил и изгибающих моментов, подобрать диаметр оси из условия прочности при изгибе. Номер варианта принять согласно номеру студента в списке по журналу. Для расчетов принять: материал оси — сталь 40, допускаемое напряжение на изгиб $r_u = 100 \, MHa$.

Порядок выполнения.

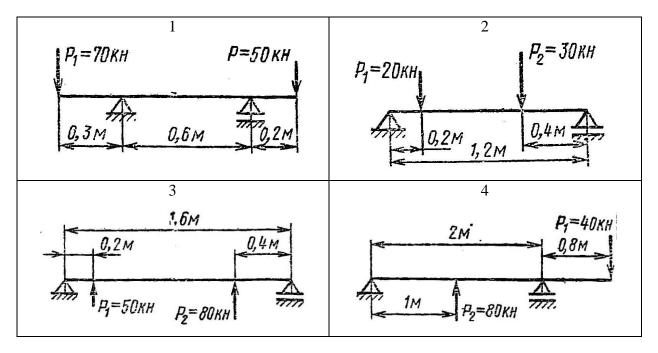
- 1. Изобразить расчетную схему.
- 2. Выписать исходные данные из таблицы.
- 3. Заменить действие опор на балку силами реакций.
- 4. Составить уравнение равновесия для плоской системы параллельных сил:

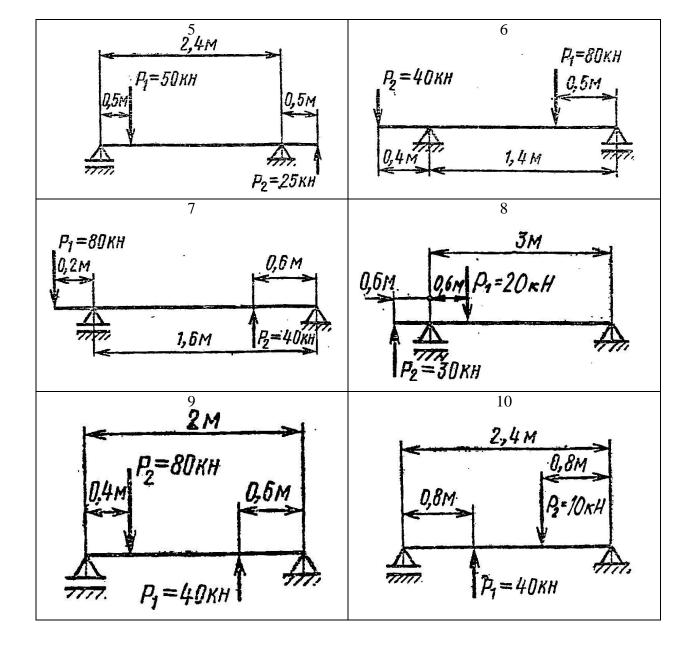
$$\sum MA = 0; \quad \sum MB = 0.$$

- 5. Найти из уравнений равновесия неизвестные силы реакций.
- 6. Определить поперечную силу в каждом из характерных сечений, как сумму внешних сил, приложенных по одну сторону от сечения.
- 7. Построить эпюру поперечных сил.
- 8. Определить величину изгибающего момента для каждого характерного сечения, как сумму моментов внешних сил, приложенных по одну сторону от сечения, относительно центра тяжести этого сечения.
- 9. Построить эпюру изгибающих моментов.
- 10. Выбрать наиболее нагруженное сечение, где *Ми=тах*.
- 11. Записать уравнение условия прочности при изгибе:

$$\sigma_{umax} = \frac{Mumax}{W_x} \le \left[\mathbf{r}_u \right]_{\cdot}^{-}$$

12. Найти требуемую величину осевого сопротивления сечения:


$$W_X \ge \frac{Mumax}{r_u}$$
; из выражения; $W_X = \frac{\pi d^3}{32} \approx 0.1d^3$.


13. Определить диаметр наиболее нагруженного поперечного сечения оси:

$$d \ge \sqrt[3]{\frac{32W_X}{\pi}} = \sqrt[3]{10W_X}$$

- 14. Округлить диаметр до ближайшего стандартного значения из ряда R40 по таблицы 2
- 15. Вывод

<u>Задания к практической работе № 8</u>

Практическая работа № 9

Расчеты при кручении.

Тема: Сопротивление материалов. Деформация кручения.

<u>Цель работы:</u> Научиться определять величину крутящих моментов, определять диаметр вала из условия прочности при кручении и определять угол закручивания.

<u>Задание:</u> Определить величину крутящих моментов для каждого участка, построить эпюру крутящих моментов, определить диаметр вала на каждом участке, определить угол закручивания каждого участка. Принять мощность на колесах:

Схему и исходные данные выбрать в соответствии с номером студента по списку в журнале. Для всех вариантов принимать: $[\tau] = 25 M\Pi a$; $G = 8 \cdot 10^4 M\Pi a$

Порядок выполнения.

1. Изобразить расчетную схему.

- 2. Разбить вал на участки и пронумеровать их.
- 3. Определить мощность на колесах.
- 4. Определить вращающие моменты на колесах: $M_{ep} = \frac{P}{\omega} H_{Mp}$

где P – мощность на колесе (Bm), ω – угловая скорость (pao/c)

- 5. Определить крутящие моменты на каждом участке M_k .
- 6. Построить эпюру крутящих моментов M_k .
- 7. Из условия прочности при кручении:

$$\tau_{kmax} = \frac{M_k}{W_p} \le \left\{ \right\}_{-}^{-}$$

определить требуемый поперечный момент сопротивления для каждого участка:

$$W_p \geq \frac{M_K}{\Gamma}$$

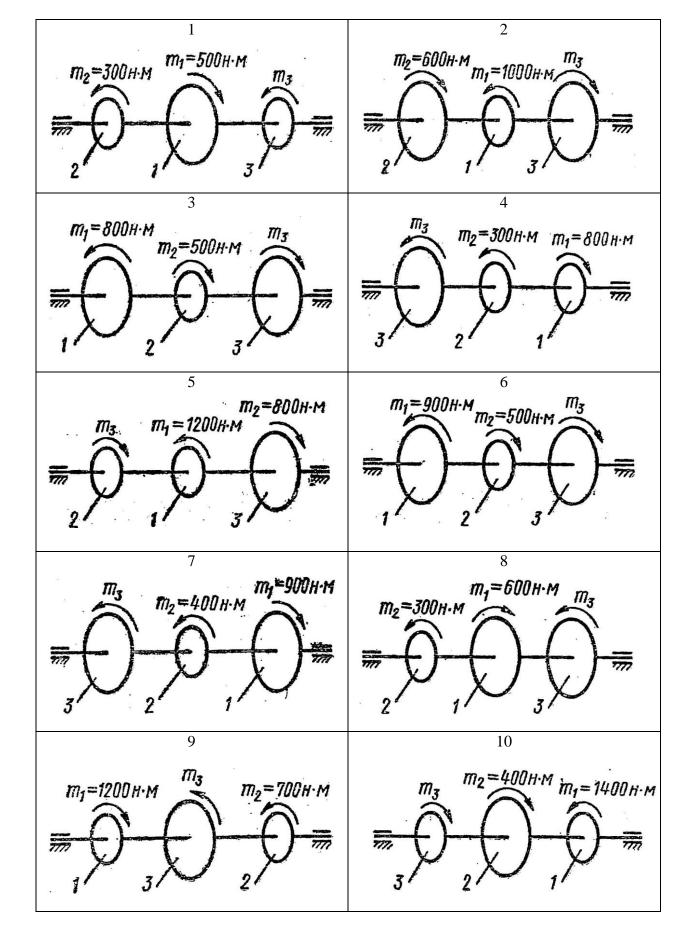
8. Определить диаметр вала для каждого участка:

$$W_p = \frac{\pi d^3}{16} \approx 0.2^3; \quad d \ge \sqrt[5]{\frac{16W_p}{\pi}} \approx \sqrt[5]{5W_p}$$

Округлить полученное значение до стандартных.

9. Определить полярные моменты инерции сечений для каждого участка:

$$J_{p}=0,1d^{4}(MM)$$


10. Определить углы закручивания каждого участка, приняв длины участков одинаковыми и равными $\ell=300$ мм

$$\varphi = \frac{180^0}{\pi} \cdot \frac{M_k \cdot \ell}{G \cdot J_p}$$

11. Вывод.

Таблица – Варианты заданий

Вариант	$P_1 \kappa B_T$	$\omega^{ ext{pa}_{ extsf{J}}}/_{ ext{c}}$	№ схемы
1, 11, 21.	30	20	1
2, 12, 22.	22	30	2
3, 13, 23.	15	10	3
4, 14, 24.	18	40	4
5, 15, 25.	10	30	5
6, 16, 26.	25	35	6
7, 17, 27.	35	40	7
8, 18, 28.	24	15	8
9, 19, 29.	50	100	9
10, 20, 30.	11	24	10

Практическая работа № 10

Определение кинематических и силовых характеристик передач.

Тема: Детали машин. Передачи.

<u>Цель работы:</u> Научиться определять кинематические и силовые характеристики приводов, состоящих из ряда последовательно соединенных передач.

<u>Задание:</u> Для привода машины, состоящего из механических передач определить угловые скорости и частоты вращения на валах, мощности и вращающие моменты на валах с учетом к.п.д., передаточные числа всех ступеней и привода, к.п.д. привода.

Принять: $\eta_{no\partial m}$ =0,99 - для пары подшипников;

 $\eta_{un} = 0,95 -$ для цепной передачи;

 $\eta_{pn} = 0.96 - для ременной передачи;$

 η_{3V0} =0,97 – для зубчатой передачи;

 $\eta_{\text{чn}}$ =0,77-0,85 — для червячной передачи.

Схему выбрать в соответствии с номером студента по списку в журнале.

Порядок выполнения.

- 1. Начертить схему привода в соответствии с вариантом.
- 2. Пронумеровать валы.
- 3. Определить передаточное отношение каждой ступени.

$$u_i = \frac{D_2}{D_1} \left(\frac{Z_2}{Z_1} \right) \left(\frac{Z_4}{Z_3} \right) \left(\frac{Z_6}{Z_5} \right)$$

4. Определить передаточного число привода.

$$u = u_1 \cdot u_2 \cdot (u_3)$$

5. Определить частоту вращения валов.

$$n_1 = n_{\partial 6};$$
 $n_2 = \frac{n_1}{u_1};$ $n_3 = \frac{n_2}{u_2};$ $n_4 = \frac{n_3}{u_3};$ $n_4 = \frac{n_1}{u};$

6. Определить частоту вращения валов.

$$\omega_k = \frac{\pi n_k}{30} (pa\partial/c)$$

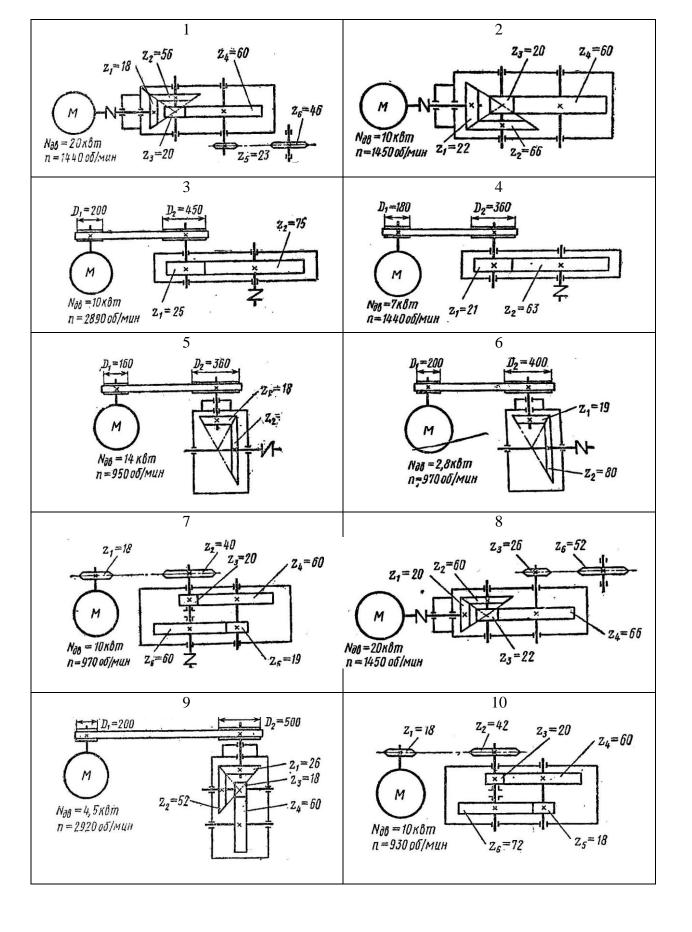
7. Определить мощности на валов.

$$P_1 = P_{\partial \theta}$$
 или $P_1 = P_{\partial \theta} \cdot \eta_{no\partial u}$ $P_2 = \frac{P_1}{u_1} \cdot \eta_1;$ $P_3 = \frac{P_2}{u_2} \cdot \eta_2;$ $P_4 = \frac{P_3}{u_3} \cdot \eta_3$

8. Определить К.П.Д. привода

$$\eta = \eta_{no\partial u}^{k} \cdot \eta_{nep} \cdot \eta_{nep} \cdots$$

где κ — число пар подшипников.


Уточнить мощность

$$P_4 = \frac{P_{\partial s}}{u} \cdot \eta$$

9. Определить вращающие моменты на валах

$$T=rac{P_k}{\omega_k}$$
 (Нм); где $P ext{-}Bm$; $\omega ext{-}pad/c$.

10. Вывод.

Контрольные вопросы к разделам дисциплины «Техническая механика»

- 1. Понятия прочности, пластичности, упругости.
- 2. Что такое деформация, виды деформаций?
- 3. В чем отличие между касательным и нормальным напряжениями?
- 4. Как формулируются условия прочности, жесткости?
- 5. Нарисуйте диаграмму растяжения. Какие механические характеристики материалов можно получить при испытании на растяжение?
 - 6. Какие методы измерения твердости существуют и в чем их суть?
 - 7. Что такое концентраторы напряжений? Как они влияют на прочность?
 - 8. Что называют пределом выносливости материала?
- 9. Для чего предназначены валы и оси, и из каких материалов они изготавливаются?
 - 10. Какая разница между осью и валом?
 - 11. Какие различают виды валов?
 - 15. Как классифицируют опоры в зависимости от вида трения?
- 16. Назовите достоинства и недостатки подшипников качения по сравнению с подшипниками скольжения.
- 17. Как классифицируются подшипники по форме тел качения и по направлению воспринимаемой нагрузки?
 - 18. Какие различают серии подшипников качения?
- 19. Какие подшипники качения устанавливают на вал с прямозубыми, косозубыми цилиндрическими, с коническими зубчатыми колесами?

Используемая литература

Основные источники:

- 1. Эрдеди А. А. Техническая механика : учебник для студ. учреждений сред. проф. образования / А. А. Эрдеди, Н. А. Эрдеди. М. : Издательский центр «Академия», 2014. 528 с.
- 2. Вереина, Л.И. Техническая механика: Учебник для сред. проф. образования / Л.И. Вереина, М.М. Краснов. М.: ИЦ Академия, 2012. 352 с.
- 3. Олофинская, В.П. Техническая механика: Курс лекций с вариантами практических и тестовых заданий: Учебное пособие / В.П. Олофинская. М.: Форум, 2013. 352 с.
 - 4. Березина Е.А. Сопротивление материалов. Учебное пособие. М., Инфра М
- 5. Олофинская В.П. Техническая механика: Курс лекций с вариантами практических и тестовых заданий: Учебное пособие. М.: Форум Инфра М, 2010
- 6. Олофинская В.П. Техническая механика: Сборник тестовых заданий. М.: Форум –Инфра М, 2007
 - 7. Сетков В.И. Сборник задач по технической механике. М.: Стройиздат, 2010
 - 8. Эрдеди А.А., Эрдеди Н.А. Детали машин. М.: Высшая школа, Академия, 2010
- 9. Эрдеди А.А. , Эрдеди Н.А. Теоретическая механика. Сопротивление материалов. М.: Высшая школа, Академия, 2001
 - 10. Никитин Г.М. Теоретическая механика для техникумов М. Наука 1988.
- 11. Мовнин М.А., Израелит А.Б., Рубашкин А.Г. «Основы технической механики». С.-П.: Политехника, 2005
 - 12. Н.Г. Куклин Г.С. Куклина «Детали машин»-«Высшая школа»1987.

Дополнительные источники:

- 1. Хруничева Т.В. Детали машин: типовые расчеты на прочность. Учебное пособие. М.: Форум Инфра М, 2009
- 2. Кривошапко С.Н., Копнов В.А. Сопротивление материалов. Руководство для решения задач и выполнения лабораторных и расчетно-графических работ. М.: Высшая школа, Академия, 2009

Интернет – ресурсы:

http://www.elektronik-chel.ru/books/detali mashin.html Электронные книги по деталям машин http://proekt-service.com/detali mashin. tehnicheskaya mehani Учебное оборудование, учебные стенды, электронные плакаты, наглядные пособия для образовательных учебных заведений

<u>http://www.teoretmeh.ru/</u> Электронный учебный курс для студентов очной и заочной форм обучения

http://www.ph4s.ru/book teormex.html Книги по теоретической механике

http://www.studfiles.ru/dir/cat40/subj1306/file13432/view137045.html Учебное пособие по сопротивлению материалов

http://www.mathematic.of.by/Classical-mechanics.htm Теоретическая механика, сопротивление материалов. Решение задач

 $\underline{\text{http://www.labstend.ru/site/index/uch tech/index full.php?mode=full&id=379&id_cat=1544}}$ Уче бные наглядные пособия и презентации по теоретической механике

http://www.spbdk.ru/catalog/science/section-191/ Санкт-Петербургский дом книги

http://lib.mexmat.ru/books/81554 Гузенков П.Г. - Детали машин: учебное пособие

http://kursavik-dm.narod.ru/Download.htm Детали машин. Программы, курсовые проекты, чертежи

<u>http://shop.ecnmx.ru/books/a-14372.html</u> Учебник Аркуша А.И. Теоретическая механика и сопротивление материалов.